F(n)=F(n-1)+n*2^n

Simple and best practice solution for F(n)=F(n-1)+n*2^n equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(n)=F(n-1)+n*2^n equation:



(F)=(F-1)+F*2^F
We move all terms to the left:
(F)-((F-1)+F*2^F)=0
We calculate terms in parentheses: -((F-1)+F*2^F), so:
(F-1)+F*2^F
Wy multiply elements
2F^2+(F-1)
We get rid of parentheses
2F^2+F-1
Back to the equation:
-(2F^2+F-1)
We get rid of parentheses
-2F^2+F-F+1=0
We add all the numbers together, and all the variables
-2F^2+1=0
a = -2; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-2)·1
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*-2}=\frac{0-2\sqrt{2}}{-4} =-\frac{2\sqrt{2}}{-4} =-\frac{\sqrt{2}}{-2} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*-2}=\frac{0+2\sqrt{2}}{-4} =\frac{2\sqrt{2}}{-4} =\frac{\sqrt{2}}{-2} $

See similar equations:

| -6.9h=-82.8 | | 9=(n) | | 3x+13=8x+2 | | 13c^2=-52 | | 7v+9=-5(v+3) | | x^2-x-10x+204=180 | | 3.6=-0.8+y | | 33-5m=-5(m+3)-8m | | 9/12=0.6/x | | 4y+34=-2(y-2) | | -3x=(6-2x) | | 1/2a+11/4=1/4a | | (1/5)x-7=3 | | 1+x=45 | | 5=d/3+4 | | 6p=-1/4 | | r-3.9=-4.7 | | 1/3*150000=x | | (11/2+x)+7=35 | | 75-x=88-2x | | 3x-37=2x+15 | | 9x-6=61 | | x2+4x+28=40 | | 3(x+2)+2(x-1)=0 | | -2+7x=23 | | 5+x/3=-2 | | 4(x+2)=2x+3+4x+7 | | 5p-17=2(20p-7) | | 7/2a=-15 | | 2x+2=6x+3-4x+1 | | x/14=4/16 | | 420=18x+150 |

Equations solver categories